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Abstract. This paper presents a locally stabilized radial basis functions (RBF) mesh-
less method based on the QR algorithm for finding the approximate solutions of the two
dimensional nonlinear sinh-Gordon (ShG) equation. The proposed method consists of
two phases. First, a semi-discrete approach with second order accuracy is performed
by means of the central finite difference (FD) and θ-weighted methods. Second, a local
RBF based on a FD is employed to discretize the space variables. The QR algorithm
is used for numerically stable computations with RBFs for all values of the free shape
parameter. Numerical example confirms the feasibility of the proposed method.

1. Introduction

In this paper, we consider the two dimensional sinh-Gordon equation [1,2] as:

∂2u(x, y, t)

∂t2
−∆u(x, y, t) + sinh(u(x, y, t)) = f(x, y, t), (x, y) ∈ Ω ⊆ R2, 0 < t ≤ T,(1a)

Th initial conditions (ICs) and the boundary condition (BC) are given as

u(x, y, 0) = g1(x, y), (x, y) ∈ Ω ∪ ∂Ω,(1b)

∂u(x, y, t)

∂t
|t=0 = g2(x, y), (x, y) ∈ Ω,(1c)

u(x, y, t) = Ψ(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T,(1d)

in which functions f, g1, g2 and Ψ are given and ∆ = ∂2

∂x2 + ∂2

∂y2
is the Laplace operator.

In this paper, we present a locally stabilized radial basis functions (RBF) meshless
method based on the QR algorithm for finding the approximate solutions of the two
dimensional nonlinear sinh-Gordon (ShG) equation. The proposed method includes of
two phases. First, a semi-discrete approach with second order accuracy is performed by
means of the central finite difference (FD) and θ-weighted methods. Second, a local RBF
based on a FD is employed to discretize the space variables.

∗Speaker

1



2. Numerical Method

2.1. Time discretization. First, m+1 distinct points tj = jk, j = 0, 1, · · · ,m with
time step k are selected. Then, the central FD and θ-weighted (0 < θ ≤ 1

2) methods are
adopted over three consecutive temporal steps tj−1, tj , tj+1 on Eq.(1a) as

uj−1 − 2 uj + uj+1

k2
−
(
θ∆uj+1 + (1− 2θ)∆uj + θ∆uj−1

)
+ sinh(uj) = f(x, y, tj), for x = (x, y) ∈ Ω,(2a)

(2b) uj = Ψ(x, y, tj), for x = (x, y) ∈ ∂Ω,

where j = 0, 1, · · · , (m− 1) and uj = u(x, tj) = u(x, y, tj).
Eq. (2a) can be rewritten as:(

1− θ k2∆
)
uj+1 =

(
2 + (1− 2θ) k2∆

)
uj −

(
1− θ k2∆

)
uj−1

− k2 sinh(uj) + k2 f(x, y, tj), for x = (x, y) ∈ Ω.(3)

2.2. Space discretization. Suppose that X = {x1, x2, · · · , xN} as N distinct collo-
cation points are chosen in domain Ω ∪ ∂Ω in which xi = (xi, yi), i = 1, · · · , N1 are the
N1 internal points and xi, i = N1 + 1, · · · , N are the N2 boundary nodes.
For each point xi, stencil Ii = {xj ∈ X : ∥xj − xi∥ ≤ R} = {xi1 , xi2 , · · · , xini

} in

support radius R (Figure 1) is chosen. We assume xi = xi1 (i = i1) without loss of

generality. For every point xi and its stencil Ii, the weights wxx,i = [wxx,i1, · · · , wxx,ini ]
T

and wyy,i = [wyy,i1, · · · , wyy,ini ]
T corresponding to ∂2

∂x2 and ∂2

∂y2
will be computed with

RBF-QR-FD method. Thus the weights wi = [wi1, · · · , wini ]
T for ∆ can be achieved by

summing up wxx,i and wyy,i as

(4) ∆uv(xi) =

ni∑
s=1

wis u
v
is , i = 1, · · · , N1, v = j − 1, j, j + 1,

where uvis = u(xis , tv).
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Figure 1. A schematic of a stencil for uniform grid nodes with δx = δy =
0.05 at center node xi = (0.5, 0.5) and R = 0.2.

2



The weights wis are only dependent on stencil nodes. Applying the collocation methods
on interior nodes in Eq. (3) and using Eq. (4) concluded that

uj+1
i − θ k2

( ni∑
s=1

wis u
j+1
is

)
= 2uji + (1− 2θ) k2

( ni∑
s=1

wis u
j
is

)
−

(
uj−1
i − θ k2

( ni∑
s=1

wis u
j−1
is

))
− k2 sinh(uji ) + k2 f(xi, yi, tj).(5)

Eq.(5) and Eq.(2b) lead to the following N ×N system:

(1− θ k2wi1)u
j+1
i − (θ k2wi2)u

j+1
i2

− · · · − (θ k2wini)u
j+1
ini

=(
2 + (1− 2θ) k2wi1

)
uji + ((1− 2θ) k2wi2)u

j
i2
+ · · ·+ ((1− 2θ) k2wini)u

j
ini

−
(
(1− θ k2wi1)u

j−1
i − (θ k2wi2)u

j−1
i2

− · · · − (θ k2wini)u
j−1
ini

)
− k2 sinh(uji ) + k2 f(xi, yi, tj), i = 1, · · · , N1,(6a)

uj+1
i = Ψ(xi, yi, tj+1), i = N1 + 1, · · · , N.(6b)

By partitioning the vector U j+1 = [uj+1
1 , uj+1

2 , · · · , uj+1
N ]T = [U j+1

1 , U j+1
2 ]T , where U j+1

1 =

[uj+1
1 , uj+1

2 , · · · , uj+1
N1

]T and U j+1
2 = [uj+1

N1+1, · · · , u
j+1
N ]T correspond to the internal and

boundary nodes, the matrix form of Eq.(6) will be written as:

U j+1
2 = Sij+1,

A1 U
j+1
1 = B1 U

j
1 − A1 U

j−1
1 − Sj + F j

+B2 U
j
2 −A2 (U

j+1
2 + U j−1

2 ), j = 1, 2, · · · , (m− 1),(7)

where sparse matrices AN×N and BN1×N with blocks AN×N =

[
A1 A2

0 IN2

]
, BN1×N =[

B1 B2

]
correspond to internal and boundary points, and N1×1 known vectors Sj , Sij+1

and F j are as follows:

Aii = 1− θ k2wi1, Bii = 2 + (1− 2θ) k2wi1,

Ai is = −θ k2wis, Bi is = (1− 2θ) k2wis,

Sj
i = k2 sinh(uji ), F j

i = k2 f(xi, yi, tj),

i = 1, · · · , N1 , s = 2, · · ·ni, j = 1, 2, · · · , (m− 1),(8)

Aii = 1, Sij+1
i = Ψ(xi, yi, tj+1), i = N1 + 1, · · · , N, j = 1, 2, · · · , (m− 1).

The other elements of vectors and matrices are equal zero.
When in Eq. (6a) j = 0, Eq.(1c) and central FD method at t = 0 are used to remove u−1

is
.

Thus,

(9) u−1
is

= u1is − 2 k g2(xis), i = 1, · · · , N, s = 1, · · ·ni.

By substituting Eq. (9) into Eq. (6a) for j = 0, the matrix form of linear systems at the
time level t0 = 0 will be obtained as:

U1
2 = Si1,
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(2A1)U
1
1 = B1 U

0
1 +G0 − S0 + F 0 +B2 U

0
2 − (2A2)U

1
2 ,(10)

where G0
i = 2k (1 − k2θwi1) g2(xi1) − 2θk3

ni∑
s=2

wis g2(xis), i = 1, · · · , N1 and the other

vectors and matrices are as in Eq. (8) with j = 0.

3. Numerical illustrations

In this section, we present a numeral example to verify the accuracy and efficiency
of the proposed method. The error norms and computational convergence orders are
computed as follows:

(1) L∞ = ∥U e − U∥∞ = max
1≤i≤N1

|U e(xi)− U(xi)|,

(2) RMS =

(
1
N1

N1∑
i=1

(U e(xi)− U(xi))
2

) 1
2

,

(3) C − order =
log (

Ej
Ej+1

)

log (
kj

kj+1
)
,

where xi, i = 1, · · · , N are the collocation nodes, U e and U are the exact and computa-
tional values of u(x, y, t) respectively and Ej is the L∞ error respect to kj or hj .

The Matlab software and the kdtree package by Guy Shechter [3] for constructing
stencils are used to apply RBF-QR-FD method. Moreover, we use θ = 1

12 , the famous
Numerov’s method and Gaussian RBFs.

Example 3.1. In this example, the elliptical ring soliton of Eq. (1) is considered. The
exact solution is in the following form

u(x, y, t) = 4 tan−1(exp(t+
1

6

√
36 + 30x2 + 12xy + 30y2 )) (x, y) ∈ Ω, t ≥ 0.

The ICs and BCs as well as function f(x, y, t) are good agreement with the exact solution.

We solve this example with various values of h and k. Table 1 compares the L∞-
errors and temporal convergence orders with methods introduced in [2] for various values
of k and h = 1/5 on [0, 1]. Table 2 compares the L∞-errors and condition numbers with
methods presented in [2] for various values of h and k = 1/100 on [0, 1]. In view of Table
2, we can observe that the proposed method is more well-conditioned than the methods
in [2]. Figure 2 displays the approximate solution and related absolute errors with h = 1/5
and k = 1/100 on [−6, 6] using RBF-QR-FD method.

Table 1. The L∞-errors and temporal convergence orders with h =
1/5, ϵ = 0.4 on [0, 1]× [0, 1] at T = 1.

k MLS RBFK RBFPS RBF-QR-FD
L∞ C-order L∞ C-order L∞ C-order L∞ C-order

1/10 1.7749E − 02 − 1.8527E − 05 − 1.8527E − 02 − 3.7588E − 03 −
1/20 1.2346E − 02 0.5237 1.2221E − 02 0.6003 1.2221E − 02 0.6003 7.7368E − 04 2.2805
1/40 1.0716E − 02 0.2043 1.1512E − 02 0.8622 1.1512E − 02 0.8622 2.2157E − 04 1.8040
1/80 6.7502E − 03 0.6668 7.6602E − 03 0.5877 7.6602E − 03 0.5877 4.5700E − 05 2.2775
1/160 3.6208E − 03 0.8986 4.2924E − 03 0.8356 4.2924E − 03 0.8356 1.5232E − 05 1.5851
1/320 1.7386E − 03 1.0584 2.1401E − 03 1.0041 2.1401E − 03 1.0041 1.1999E − 05 0.3442
1/640 7.5607E − 04 1.0544 2.9170E − 04 1.6748 2.9170E − 04 1.6748 1.1504E − 05 0.0608
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Table 2. The L∞-errors and condition numbers with k = 1/100, ϵ = 0.4 and
ns = 29 on [0, 1]× [0, 1] at T = 1.

h MLS RBFK RBFPS RBF-QR-FD
L∞ Cond (A) L∞ Cond(A) L∞ Cond(A) L∞ Cond(A)

1/5 5.6015E − 03 7.71E + 04 3.4571E − 03 3.45E + 2 3.4571E − 03 1.25 2.3804E − 05 1.0045
1/10 8.4393E − 03 6.02E + 07 6.4590E − 04 1.75E + 3 6.4590E − 04 1.57 3.6668E − 05 1.0614
1/15 9.1597E − 03 1.66E + 10 2.9539E − 04 2.95E + 4 2.9539E − 04 2.10 5.2778E − 05 1.0408
1/20 9.3619E − 03 3.02E + 11 1.5029E − 05 1.50E + 4 1.5029E − 05 3.50 3.4312E − 05 1.0760
1/25 9.3872E − 03 2.08E + 12 8.9040E − 05 8.90E + 5 8.9040E − 05 4.97 4.0460E − 05 1.1155
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Figure 2. Surfaces of numerical solutions (left) and errors (right) with
the RBF-QR-FD method when ϵ = 0.4, h = 1/5, and k = 1/100 on
[−6,−6]× [−6, 6] 5
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