o pisled
igo pols p 3 Slwilo

On the stability of additive functional equations in
probabilistic modular space

Shahin Yadegari''*, Mehdi Choubin?

I Master student of Mathematics, Velayat University, Iranshahr, Iran; yadegarishahin3@gmail.com
2Department of Mathematics, Velayat University, Iranshahr, Iran; m.choubin@velayat.ac.ir

ABSTRACT. In this paper, we present a fixed point method to prove generalized Hyers—
Ulam stability of the additive functional equation f(z+y) = f(z)+f(y) in S-homogeneous
probabilistic modular space.

Keywords: stability, functional equation, fixed point, probabilistic modular space.
AMS Mathematics Subject Classification [2010]: 39B52, 39B72, 47TH09.

1. Introduction

The concept of stability for a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. Recall that the
problem of stability of functional equations was motivated by a question of Ulam being
asked in 1940 [8] and Hyers answer to it was published in [3]. Hyers’s theorem was
generalized by Aoki [1] for additive mappings and by Rassias [7] for linear mappings by
considering an unbounded Cauchy difference.

In this paper, we investigate the generalized Hyers—Ulame stability of additive func-
tional equation for mappings from linear spaces into probabilistic modular spaces. The
theory of modulars on linear spaces and the corresponding theory of modular linear spaces
were founded by Nakano [5]. In [2], after introducing the probabilistic modular, authors
then investigated some basic facts in such spaces and study linear operators defined be-
tween them.

DEerFINITION 1.1. Let X be an arbitrary vector space.
(a) A functional p : X — [0, 00] is called a modular if for arbitrary z,y € X,
(i) p(z) =0 if and only if z =0,
(i) p(ax) = p(x) for every scaler o with |a| =1,
(iii) p(ax + By) < p(z) + p(y) if and only if « + f =1 and «, 5 > 0,
(b) if (iii) is replaced by
(i) p(az + By) < ap(z) + Bp(y) if and only if a + 8 =1 and a, 8 > 0,
then we say that p is a convex modular.
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A modular p defines a corresponding modular space, i.e., the vector space X, given
by X, = {reX: p(Ar) =>0as A —0}. Let p be a convex modular, the modular
space X, can be equipped with a norm called the Luxemburg norm, defined by |/z|, =
inf {)\ >0 ; p (%) < 1} . A function modular is said to satisfy the Ao—condition if there
exists k > 0 such that p(2z) < kp(x) for all x € X),.

DEFINITION 1.2. Let {x,} and = be in &,,. Then
(i) the sequence {x,}, with x,, € X, is p-convergent to x and write x,, Ly wif plan—z) —
0 asn — oo.
(ii) The sequence {z,}, with z,, € &, is called p-Cauchy if p(z, — ) — 0 as n,m — .
(ili) A subset S of X, is called p—complete complete if and only if any p—Cauchy sequence
is p—convergent to an element of S.

The modular p has the Fatou property if and only if p(x) < liminf,,_, o p(z,) whenever
the sequence {z,} is p—convergent to z.

REMARK 1.3. Note that p is an increasing function. Suppose 0 < a < b, then property
(iii) of Definition 1.1 with y = 0 shows that p(az) = p ($bzx) < p(bz) for all z € X.
Moreover, if p is a convex modular on X and |a| < 1, then p(az) < ap(z) and also
p(z) < $p(2z) for all z € X.

We follow the definition of probabilistic modular space briefly as given in [2]. In the
following, A stands for the set of all non-decreasing functions f : R — ]RE{ satisfying
inficr f(t) = 0, and sup;cp f(t) = 1. We also denote the function min by A.

DEFINITION 1.4. A pair (X, p) is called a probabilistic modular space (PM-space) if
X is a real vector space, u is a mapping from X into A satisfying the following conditions:

(1) p(x)(0) = 05

(2) p(z)(t) =1 for all t > 0, if and only if z =6 (0 is the null vector in X);

(3) u(=2)(t) = p(z)(t);

(4) plaz+By)(s+t) > p(x)(s) Au(y)(t), for all z,y € X, and a, B, 5,t € Ry, a4+ = 1.

For example, suppose that X is a real vector space and p is a modular on X. Define

(o)) = {O’ e

t

Then (X, 1) is a probabilistic modular space.
We say (X, i) is f-homogeneous, where 3 € (0

- )

for every x € X, t >0, and o € R\ {0}.

DEFINITION 1.5. Let (X, pu) be a PM-space, {z,} be a sequence in X and z € X.
Then
(i) the sequence {z,}, with z, € (X, p), is p—convergent to z and write 2, —— =, if for
every t > 0 and A € (0,1), there exists a positive integer ng such that u(x, —z)(t) > 1— A
for all n > ny.
(i) the sequence {zy}, with x,, € (X, u), is p—Cauchy, if for every ¢ > 0 and A € (0,1),
there exists a positive integer ng such that p(z, — x,,)(t) > 1 — X for all m,n > nyg.
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By [2], every p-convergent sequence in a P M-space is a u-Cauchy sequence. If each p-
Cauchy sequence is u-convergent in a PM-space (X, ), then (X, ) is called a p-complete
P M-space.

A PM-space (X, ) possesses Fatou property if for any sequence {x,} of X p-converging
to x, we have

u(w)(t) = hr,?f}lp () (1)

for each ¢t > 0.
REMARK 1.6. Note that for any x € X, p(x)(.) is an increasing function, Since u(z) €

A. Moreover, if py is a S-homogeneous probabilistic modular on X and x,y € X, then
property (4) of Definition 1.4 shows that

pla+9) (2(s 1) = (;w n ;y> (5+) > n(@)(s) A uly) (1)

For more details about the P.M-space, the readers refer to [6].
Our aim is based on the fixed point approach:

THEOREM 1.7 ( [4]). Let X, be a modular space such that satisfies the Fatou property.
Let C be a p-complete nonempty subset of X, and let T : C — C be quasicontraction, that
18, there exists K < 1 such that

p(T'(x) = T(y)) < Kmax{p(z —y),p(x = T(x)), ply = T(y)), p(z — T(y)), ply — T(x))}.
Let x € C such that 6,(x) := sup{p(T™(x) — T™(x)) : m,n € N} < oo. Then T"(x)
p-converges to w € C. Moreover, if p(w — T(w)) < oo and p(x — T(w)) < oo, then, the
p-limit of T™(x) is a fixed point of T. Furthermore, if w* is any fized point of T in C such
that p(w — wx) < 0o, then one has w = wx.

Throughout this paper, we assume that u is a probabilistic modular on X with the Fa-

tou property(in the probabilistic modular sense) and (X, u1) is a p-complete f-homogeneous
P M-space with 8 € (0, 1].

2. Main Result
In this section, we establish the conditional stability of equation f(x+y) = f(x)+ f(y)
in the PM-spaces.

THEOREM 2.1. Let E be a linear space and (X, u) be a p-complete B-homogeneous
PM-space. Suppose f: E — (X, u) satisfies the condition f(0) = 0 and an inequality of
the form
(1) p(f(@+y) = fl@) = fy) @) = ¢(z,y)(t)
forallx,y € E, where ¢ : E x E — A is a given function such that

(2w, 22)(2°Lt) = ¢(x,x)(t)
for all x € E and has the property
(2) lim (2", 2"y) (2°M) = 1

for all x,y € E and a constant 0 < L < 2% Then there exists a unique additive mapping
j: E— (X,pn) such that

3 H) = F@) (g 1) 2 0l 2)(0)
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forallx € E.

PROOF. We consider the set M = {h : E — (X,u)| h(0) = 0} and introduce the
modular p on M as follows,

p(h) = inf{c > 0: p(h(x))(ct) = ¢(x, z)(t)}.

It is clear that p is even and p(0) = 0. If p(h) = 0, then for each ¢ > 0, u(h(z))(ct) >
¢(x,x)(t) for allt > 1, x,y € E. Now if € = ct is fixed, and t — +o00, then u(h(x))(e) = 1,
which implies that A = 0. It is sufficient to show that p satisfies the following condition
plag+ph) < p(g)+p(h),if a4+ =1and o, 8 > 0. Let € > 0 be given. Then there exist
c1 > 0 and co > 0 such that

a <plg)+e pulg(x))(et) = oz, )(t)
and

e <ph)+e p(h(@))(eat) = dla,2)(D).
Ifa+ 5 =1and «a,B > 0, then we get

plag(z) + Bh(z))(ert + cat) = plg(x))(ert) A p(h(x))(cat) = oz, 2)(t),

whence p(ag+ Bh) < c1+c2 < p(g) + p(h) + 2¢. Hence, we have p(ag+ Bh) < p(g) + p(h).
We now show that p satisfies the Ay—condition with x = 28. For € > 0 given, there exists
¢ > 0 such that ¢ < p(h) + ¢ and p(h(x))(ct) < ¢(x,x). Since (X, u) is a Sf-homogeneous
P M-space., we have p(2h(z))(2%ct) = p(h(z))(ct) > ¢(z,x), whence p(2h) < 2%¢ <
28 p(h) + 28 . Therefore p(2h) < 27 p(h). Thus p satisfies the Ay—condition with & = 25.
Moreover, p satisfies the Fatou property(in the modular sense). Indeed, if sequence {hy,}
of M p-converging to h, then we can easy see that h(z) p-converging to h(z) for any
x € E. Let ¢ := liminf p(h,) < co and p(h) > 0. We have u(h(x))(ot) < ¢(x,z)(t) for all
t > 0. Since u satisfies the Fatou property(in the probabilistic modular sense), hence

limsup p(hn(z))(et) < p(h(z))(et) < ¢(z, z)(t).
By last inequality we get there exists a positive integer ng € N such that p(hy,(x))(ot) <
é(x,x)(t) and so p(hy) > e for all n > ng. Thus liminf p(h,) > o, this is a contradiction.
Therefore, p satisfies the Fatou property.

If 6 > 0 and A\ € (0,1) are given, since ¢(x,z) € A, there exists ty > 0 such that
o(x,x)(to) > 1 — A. Let {h,} be a p-Cauchy sequence in M, and let ¢ < % be given.
There exists a positive integer nyg € N such that p(h, — hy,) < e for all n,m > ng. Now
by considering the definition of the modular p, we see that

(4) plhn(@) = hin(2))(8) = p(hn(2) = hin(2))(eto) = b2, 2)(t0) > 1 = A,

for all z € F and n,m > ng. If x is a arbitrary given points of E, (4) implies that
{hn(x)} is a p—Cauchy sequence in (X, u). Since (X, u) is pu—complete, so {hn(z)} is p—
convergent in (X, u), for all z € E. Hence, we can define a function h : £ — (X, u) by
h(z) = limy—o0 hp(z), for any € E. Let m increase to infinity, then (4) implies that
p(h, — h) < e for all n > ny, since u has the Fatou property. Thus {h,} is p—convergent
sequence in M. Therefore M, is p—complete. Now, letting =y in (1), we get

) H(F(20) — 27 () (1) > 6, ) (1)
and so
©) n (787 - 5@) (5) 2 o0
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for all x € E. If we replace z by 2z in (5) we get

(7) p(f(4z) = 2f(22)) = ¢(2z, 2x)(t)

for all x € €. Since u is a S-homogeneous probabilistic modular, by (7) we obtain
f(4x) B 1

o n (157 - se0)) (20 = (G000 - 2200} ) (20

= u(f(4e) — 2f(22))(2°Lt) > ¢(2x,22)(2°Lt) > ¢(, x)(t),
for all x € E. Therefore, by (5) and (8) we get
9) ,
W (252 - sw) wer o = (F{LG2 - sen } + Jusen 2y ) e o)

>4 (ﬂ;m _ f@x)) (Lt) A g (£(2) = 2/ (2)) (1) > b, 2)(1),

for all z € E. By replacing z and Lt + t by 22 and 2°(L?t + Lt) in (9) , respectively, we
get

" (f(;i:r) B f(;x)> (L2 + Lt) = 1 (f(gz:r) B f(2x)> (25(L2t+Lt)>

(10)
> ¢(2x,22)(2°Lt) > ¢(z,2)(t),
and moreover, by (6) and (10) we get

" <f(§2x) - f(a:)) <25(L2t+ Lt) ~|—t>

> (182 L8y s 00 (182 - jw)) () 2 et

for all x € E. By mathematical induction, we can easily see that

n n—1
any on (f 2 f(fc)> ({2/“”—%”—1 - Z@ﬂw‘-l} t> > 4(z, 7)),

=1

for all x € E and n > 3. Next, we consider the function 7 : M, — M, defined
by Th(z) := $h(2z), for all h € M,,. Let g,h € M, and let ¢ € [0,00] be an arbitrary
constant with p(g—h) < ¢. From the definition of p, we have u(g(z)—h(x))(ct) > ¢(x, z)(t)
for all z € E. By the assumption and the last inequality, we get

g(22)  h(22)
“( 2 2

for all x € E. Hence, p(Tg — Th) < Lp(g — h), for all g,h € M, that is, T is a p-strict
contraction. We show that the p—strict mapping 7 satisfies the conditions of Theorem
1.7.

Next, we assert that d,(f) = sup {p(T"(f) = T™(f));n,m € N)} < co. By (11) we
get

) (Let) = p(g(2z) — h(22))(28Let) > ¢(2x,22)(2°Lt) > o(x, z)(t)

n—1 n

12 (T =) <P ST <Y S gy
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Since p satisfies the Ay—condition with x = 27, it follows from inequality (12) that
1 1
p(T™(f) = T™()) < 50 2T () = 2f) + 50 (2T™(f) - 2J)

K K 28
< §P(Tn(f) -+ ip(Tm(f) - f) < mﬂ%x)(t%
for every x € FE and n,m € N, which implies that p (T"(f) — T™(f)) < %, for all

n,m € N. By the definition of d,(f), we have 0,(f) < oco. Theorem 1.7 shows that
{T"(f)} is p—converges to j € M,. Since p has the Fatou property inequality (12), gives

p(Tj—f) < oo
If we replace m by n+1 in inequality (??), then we obtain p (7" f — T"f) < T 225%’
for all x € E. Therefore p(T(j) — j) < (2°/1 — 2°L) < oo. Tt follows from Theorem 1.7
that p-limit of {7"(f)} i.e., j € M, is fixed point of map 7. If we replace x by 2"z and
y by 2™y in inequality (1), then we obtain
p(f(2"(x+y) = f(2") = [(2"y)) (t) = 2"z, 2"y)(¢)

for all x,y € E. Hence,

" [z +y)  [f(2"z)  f(2"y)

2n 2n 2n

) (1) > p(F@( + ) — F(2"0) — F@'9)) (270)

> $(2"x,2"y) (2°"1)

for all z,y € E. Taking the limit, we deduce that j(x +y) =j(z) +j(y) for all z,y € E.
It follows from inequality (12) that p(j — f) < If 7* is another fixed point of T,

- QBL
then
. 1 .
p(i—J°) < 5 p2T(5) = 2f) + 5p(2T(j7) = 2f)
K K 28
< - N )< —— ,
PATG) ~ )+ ST~ ) < g < o0
Since T is p-strict contraction, we get p(j — j*) = p(T(j) — T(5*)) < Lp(j — j*), which
implies that p(j — 7*) = 0 or j = j*, since p(j — j*) < oo. This prove the uniqueness of
. 0
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