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1. Introduction

The concept of stability for a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. Recall that the
problem of stability of functional equations was motivated by a question of Ulam being
asked in 1940 [8] and Hyers answer to it was published in [3]. Hyers’s theorem was
generalized by Aoki [1] for additive mappings and by Rassias [7] for linear mappings by
considering an unbounded Cauchy difference.

In this paper, we investigate the generalized Hyers–Ulame stability of additive func-
tional equation for mappings from linear spaces into probabilistic modular spaces. The
theory of modulars on linear spaces and the corresponding theory of modular linear spaces
were founded by Nakano [5]. In [2], after introducing the probabilistic modular, authors
then investigated some basic facts in such spaces and study linear operators defined be-
tween them.

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by

(iii)
′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.
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A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given
by Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0} . Let ρ be a convex modular, the modular
space Xρ can be equipped with a norm called the Luxemburg norm, defined by ∥x∥ρ =
inf
{
λ > 0 ; ρ

(
x
λ

)
≤ 1
}
. A function modular is said to satisfy the ∆2–condition if there

exists κ > 0 such that ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and write xn
ρ−→ x if ρ(xn−x) →

0 as n → ∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn−xm) → 0 as n,m → ∞.
(iii) A subset S of Xρ is called ρ–complete complete if and only if any ρ–Cauchy sequence
is ρ–convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever
the sequence {xn} is ρ–convergent to x.

Remark 1.3. Note that ρ is an increasing function. Suppose 0 < a < b, then property
(iii) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b bx
)
≤ ρ(bx) for all x ∈ X .

Moreover, if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also
ρ(x) ≤ 1

2ρ(2x) for all x ∈ X .

We follow the definition of probabilistic modular space briefly as given in [2]. In the
following, ∆ stands for the set of all non-decreasing functions f : R → R+

0 satisfying
inft∈R f(t) = 0, and supt∈R f(t) = 1. We also denote the function min by ∧.

Definition 1.4. A pair (X,µ) is called a probabilistic modular space (PM-space) if
X is a real vector space, µ is a mapping from X into ∆ satisfying the following conditions:

(1) µ(x)(0) = 0;
(2) µ(x)(t) = 1 for all t > 0, if and only if x = θ (θ is the null vector in X);
(3) µ(−x)(t) = µ(x)(t);
(4) µ(αx+βy)(s+t) ≥ µ(x)(s)∧µ(y)(t), for all x, y ∈ X, and α, β, s, t ∈ R+

0 , α+β = 1.

For example, suppose that X is a real vector space and ρ is a modular on X. Define

µ(x)(t) =

{
0, t ≤ 0,

t
t+ρ(x) , t > 0.

Then (X,µ) is a probabilistic modular space.
We say (X,µ) is β-homogeneous, where β ∈ (0, 1] if,

µ(αx)(t) = µ(x)

(
t

|α|β

)
for every x ∈ X, t > 0, and α ∈ R \ {0}.

Definition 1.5. Let (X,µ) be a PM-space, {xn} be a sequence in X and x ∈ X.
Then
(i) the sequence {xn}, with xn ∈ (X,µ), is µ–convergent to x and write xn

µ−→ x, if for
every t > 0 and λ ∈ (0, 1), there exists a positive integer n0 such that µ(xn−x)(t) > 1−λ
for all n ≥ n0.
(ii) the sequence {xn}, with xn ∈ (X,µ), is µ–Cauchy, if for every t > 0 and λ ∈ (0, 1),
there exists a positive integer n0 such that µ(xn − xm)(t) > 1− λ for all m,n ≥ n0.
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By [2], every µ-convergent sequence in a PM-space is a µ-Cauchy sequence. If each µ-
Cauchy sequence is µ-convergent in a PM-space (X,µ), then (X,µ) is called a µ-complete
PM-space.
A PM-space (X,µ) possesses Fatou property if for any sequence {xn} of X µ-converging
to x, we have

µ(x)(t) ≥ lim sup
n≥1

µ(xn)(t)

for each t > 0.

Remark 1.6. Note that for any x ∈ X, µ(x)(.) is an increasing function, Since µ(x) ∈
∆. Moreover, if µ is a β-homogeneous probabilistic modular on X and x, y ∈ X, then
property (4) of Definition 1.4 shows that

µ(x+ y)
(
2β(s+ t)

)
= µ

(
1

2
x+

1

2
y

)
(s+ t) ≥ µ(x)(s) ∧ µ(y)(t).

For more details about the PM-space, the readers refer to [6].

Our aim is based on the fixed point approach:

Theorem 1.7 ( [4]). Let Xρ be a modular space such that satisfies the Fatou property.
Let C be a ρ-complete nonempty subset of Xρ and let T : C → C be quasicontraction, that
is, there exists K < 1 such that

ρ(T (x)− T (y)) ≤ Kmax{ρ(x− y), ρ(x− T (x)), ρ(y − T (y)), ρ(x− T (y)), ρ(y − T (x))}.
Let x ∈ C such that δρ(x) := sup{ρ(Tn(x) − Tm(x)) : m,n ∈ N} < ∞. Then Tn(x)
ρ-converges to ω ∈ C. Moreover, if ρ(ω − T (ω)) < ∞ and ρ(x − T (ω)) < ∞, then, the
ρ-limit of Tn(x) is a fixed point of T . Furthermore, if ω∗ is any fixed point of T in C such
that ρ(ω − ω∗) < ∞, then one has ω = ω∗.

Throughout this paper, we assume that µ is a probabilistic modular on X with the Fa-
tou property(in the probabilistic modular sense) and (X,µ) is a µ-complete β-homogeneous
PM-space with β ∈ (0, 1].

2. Main Result

In this section, we establish the conditional stability of equation f(x+y) = f(x)+f(y)
in the PM-spaces.

Theorem 2.1. Let E be a linear space and (X,µ) be a µ-complete β-homogeneous
PM-space. Suppose f : E → (X,µ) satisfies the condition f(0) = 0 and an inequality of
the form

(1) µ (f(x+ y)− f(x)− f(y)) (t) ≥ ϕ(x, y)(t)

for all x, y ∈ E, where ϕ : E ×E → ∆ is a given function such that

ϕ(2x, 2x)(2βLt) ≥ ϕ(x, x)(t)

for all x ∈ E and has the property

(2) lim
n→∞

ϕ(2nx, 2ny)(2βnt) = 1

for all x, y ∈ E and a constant 0 < L < 1
2β
. Then there exists a unique additive mapping

j : E → (X,µ) such that

(3) µ(j(x)− f(x))
( 1

1− 2βL
t
)
≥ ϕ(x, x)(t)
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for all x ∈ E.

Proof. We consider the set M = {h : E → (X,µ)| h(0) = 0} and introduce the
modular ρ on M as follows,

ρ(h) = inf{c > 0 : µ(h(x))(ct) ≥ ϕ(x, x)(t)}.
It is clear that ρ is even and ρ(0) = 0. If ρ(h) = 0, then for each c > 0, µ(h(x))(ct) ≥

ϕ(x, x)(t) for all t > 1, x, y ∈ E. Now if ϵ = ct is fixed, and t → +∞, then µ(h(x))(ϵ) = 1,
which implies that h = 0. It is sufficient to show that ρ satisfies the following condition
ρ(αg+ βh) ≤ ρ(g) + ρ(h), if α+ β = 1 and α, β ≥ 0. Let ε > 0 be given. Then there exist
c1 > 0 and c2 > 0 such that

c1 ≤ ρ(g) + ε; µ(g(x))(c1t) ≥ ϕ(x, x)(t)

and

c2 ≤ ρ(h) + ε; µ(h(x))(c2t) ≥ ϕ(x, x)(t).

If α+ β = 1 and α, β ≥ 0, then we get

µ(αg(x) + βh(x))(c1t+ c2t) ≥ µ(g(x))(c1t) ∧ µ(h(x))(c2t) ≥ ϕ(x, x)(t),

whence ρ(αg+βh) ≤ c1+ c2 ≤ ρ(g)+ρ(h)+2ε. Hence, we have ρ(αg+βh) ≤ ρ(g)+ρ(h).
We now show that ρ satisfies the ∆2–condition with κ = 2β. For ε > 0 given, there exists
c > 0 such that c ≤ ρ(h) + ε and µ(h(x))(c t) ≤ ϕ(x, x). Since (X,µ) is a β-homogeneous
PM-space., we have µ(2h(x))(2βc t) = µ(h(x))(c t) ≥ ϕ(x, x), whence ρ(2h) ≤ 2βc ≤
2β ρ(h) + 2β ε. Therefore ρ(2h) ≤ 2β ρ(h). Thus ρ satisfies the ∆2–condition with κ = 2β.
Moreover, ρ satisfies the Fatou property(in the modular sense). Indeed, if sequence {hn}
of M ρ-converging to h, then we can easy see that h(x) µ-converging to h(x) for any
x ∈ E. Let ϱ := lim inf ρ(hn) < ∞ and ρ(h) > ϱ. We have µ(h(x))(ϱt) < ϕ(x, x)(t) for all
t > 0. Since µ satisfies the Fatou property(in the probabilistic modular sense), hence

lim supµ(hn(x))(ϱt) ≤ µ(h(x))(ϱt) < ϕ(x, x)(t).

By last inequality we get there exists a positive integer n0 ∈ N such that µ(hn(x))(ϱt) <
ϕ(x, x)(t) and so ρ(hn) > ϱ for all n ≥ n0. Thus lim inf ρ(hn) > ϱ, this is a contradiction.
Therefore, ρ satisfies the Fatou property.

If δ > 0 and λ ∈ (0, 1) are given, since ϕ(x, x) ∈ ∆, there exists t0 > 0 such that
ϕ(x, x)(t0) > 1 − λ. Let {hn} be a ρ–Cauchy sequence in Mρ and let ε < δ

t0
be given.

There exists a positive integer n0 ∈ N such that ρ(hn − hm) ≤ ε for all n,m ≥ n0. Now
by considering the definition of the modular ρ, we see that

(4) µ(hn(x)− hm(x))(δ) ≥ µ(hn(x)− hm(x))(εt0) ≥ ϕ(x, x)(t0) > 1− λ,

for all x ∈ E and n,m ≥ n0. If x is a arbitrary given points of E, (4) implies that
{hn(x)} is a µ–Cauchy sequence in (X,µ). Since (X,µ) is µ–complete, so {hn(x)} is µ–
convergent in (X,µ), for all x ∈ E. Hence, we can define a function h : E → (X,µ) by
h(x) = limn→∞ hn(x), for any x ∈ E. Let m increase to infinity, then (4) implies that
ρ(hn − h) ≤ ε for all n ≥ n0, since µ has the Fatou property. Thus {hn} is ρ–convergent
sequence in Mρ. Therefore Mρ is ρ–complete. Now, letting x = y in (1), we get

(5) µ(f(2x)− 2f(x))(t) ≥ ϕ(x, x)(t)

and so

(6) µ

(
f(2x)

2
− f(x)

)(
t

2β

)
≥ ϕ(x, x)(t)
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for all x ∈ E. If we replace x by 2x in (5) we get

(7) µ(f(4x)− 2f(2x)) ≥ ϕ(2x, 2x)(t)

for all x ∈ E . Since µ is a β-homogeneous probabilistic modular, by (7) we obtain

µ

(
f(4x)

2
− f(2x)

)
(Lt) = µ

(
1

2
{f(4x)− 2f(2x)}

)
(Lt)

= µ(f(4x)− 2f(2x))(2βLt) ≥ ϕ(2x, 2x)(2βLt) ≥ ϕ(x, x)(t),

(8)

for all x ∈ E. Therefore, by (5) and (8) we get

µ

(
f(22x)

22
− f(x)

)
(Lt+ t) = µ

(
1

2

{
f(4x)

2
− f(2x)

}
+

1

2
{f(2x)− 2f(x)}

)
(Lt+ t)

≥ µ

(
f(4x)

2
− f(2x)

)
(Lt) ∧ µ (f(2x)− 2f(x)) (t) ≥ ϕ(x, x)(t),

(9)

for all x ∈ E. By replacing x and Lt+ t by 2x and 2β(L2t+ Lt) in (9) , respectively, we
get

µ

(
f(23x)

23
− f(2x)

2

)
(L2t+ Lt) = µ

(
f(23x)

22
− f(2x)

)(
2β(L2t+ Lt)

)
≥ ϕ(2x, 2x)(2βLt) ≥ ϕ(x, x)(t),

(10)

and moreover, by (6) and (10) we get

µ

(
f(23x)

23
− f(x)

)(
2β(L2t+ Lt) + t

)
≥ µ

(
f(23x)

23
− f(2x)

2

)
(L2t+ Lt) ∧ µ

(
f(2x)

2
− f(x)

)(
t

2β

)
≥ ϕ(x, x)(t),

for all x ∈ E. By mathematical induction, we can easily see that

(11) µ

(
f(2nx)

2n
− f(x)

)({
2β(n−2)Ln−1 +

n−1∑
i=1

(2βL)i−1

}
t

)
≥ ϕ(x, x)(t),

for all x ∈ E and n ≥ 3. Next, we consider the function T : Mρ → Mρ defined
by T h(x) := 1

2h(2x), for all h ∈ Mρ. Let g, h ∈ Mρ and let c ∈ [0,∞] be an arbitrary
constant with ρ(g−h) ≤ c. From the definition of ρ, we have µ(g(x)−h(x))(ct) ≥ ϕ(x, x)(t)
for all x ∈ E. By the assumption and the last inequality, we get

µ

(
g(2x)

2
− h(2x)

2

)
(Lct) = µ(g(2x)− h(2x))(2βLct) ≥ ϕ(2x, 2x)(2βLt) ≥ ϕ(x, x)(t)

for all x ∈ E. Hence, ρ(T g − T h) ≤ Lρ(g − h), for all g, h ∈ Mρ that is, T is a ρ–strict
contraction. We show that the ρ–strict mapping T satisfies the conditions of Theorem
1.7.

Next, we assert that δρ(f) = sup {ρ (T n(f)− T m(f)) ;n,m ∈ N)} < ∞. By (11) we
get

(12) ρ (T n(f)− f) ≤ 2β(n−2)Ln−1 +
n−1∑
i=1

(2βL)i−1 ≤
n∑

i=1

(2βL)i−1 ≤ 1

1− 2βL
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Since ρ satisfies the ∆2–condition with κ = 2β, it follows from inequality (12) that

ρ (T n(f)− T m(f)) ≤ 1

2
ρ (2T n(f)− 2f) +

1

2
ρ (2T m(f)− 2f)

≤ κ

2
ρ (T n(f)− f) +

κ

2
ρ (T m(f)− f) ≤ 2β

1− 2βL
ϕ(x, x)(t),

for every x ∈ E and n,m ∈ N, which implies that ρ (T n(f)− T m(f)) ≤ 2β

1−2βL
, for all

n,m ∈ N. By the definition of δρ(f), we have δρ(f) < ∞. Theorem 1.7 shows that
{T n(f)} is ρ–converges to j ∈ Mρ. Since ρ has the Fatou property inequality (12), gives
ρ(T j − f) < ∞.

If we replace m by n+1 in inequality (??), then we obtain ρ
(
T n+1f − T nf

)
≤ 2β

1−2βL
,

for all x ∈ E. Therefore ρ(T (j) − j) ≤ (2β/1 − 2βL) < ∞. It follows from Theorem 1.7
that ρ–limit of {T n(f)} i.e., j ∈ Mρ is fixed point of map T . If we replace x by 2nx and
y by 2ny in inequality (1), then we obtain

µ (f(2n(x+ y))− f(2nx)− f(2ny)) (t) ≥ ϕ(2nx, 2ny)(t)

for all x, y ∈ E. Hence,

µ

(
f(2n(x+ y))

2n
− f(2nx)

2n
− f(2ny)

2n

)
(t) ≥ ρ (f(2n(x+ y))− f(2nx)− f(2ny)) (2βnt)

≥ ϕ(2nx, 2ny)(2βnt)

for all x, y ∈ E. Taking the limit, we deduce that j(x+ y) = j(x) + j(y) for all x, y ∈ E.
It follows from inequality (12) that ρ(j − f) ≤ 1

1−2βL
. If j∗ is another fixed point of T ,

then

ρ(j − j∗) ≤ 1

2
ρ(2T (j)− 2f) +

1

2
ρ(2T (j∗)− 2f)

≤ κ

2
ρ(T (j)− f) +

κ

2
ρ(T (j∗)− f) ≤ 2β

1− 2βL
< ∞.

Since T is ρ–strict contraction, we get ρ(j − j∗) = ρ(T (j) − T (j∗)) ≤ Lρ(j − j∗), which
implies that ρ(j − j∗) = 0 or j = j∗, since ρ(j − j∗) < ∞. This prove the uniqueness of
j. □
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