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Abstract 

The effect of Electrical Discharge Machining (EDM) 

parameters (i.e., Voltage, Peak current, Pulse on time and 

Pulse off time) was investigated in order to minimize the 

electrode wear ratio. Effects of selected parameters on 

process variable, electrode wear ratio was investigated by 

developing the mathematical model using response 

surface method (RSM). Optimal combination of these 

parameters was obtained for achieving controlled 

machining of the work-pieces.  
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Introduction 

Electrical discharge machining (EDM) is one of the 

interested used non-traditional machining processes in 

industries. It is based on removing conductive material 

specially metals with any soft or hard material, the 

machining process is due to heat generated of an electric 

arc between electrode and work-piece in the presence of 

dielectric fluid [1].  

Literature review  

To find an optimized level of input parameters for 

reaching suitable outputs has always been a challenge 

and a tedious task for researchers for many years. For 

modelling the mathematical relationship between 

machining responses and process parameters, there have 

been different techniques that have been used by 

different researchers [2] and [3]. However Artificial 

Neural Network (ANN) model is simple for applying, 

there is some error of estimation value in this technique 

when outcomes are nonlinear [4] and [5], adaptive 

neuro-fuzzy interference have also been used by 

researchers in the past [6].  

Lin et al., used Grey-Taguchi method to achieve 

multiple performance characteristics like high MRR, 

low working gap and low electrode wear when 

machining with Inconel 718 alloy [7]. In the same way, 

Aliakbari and Baseri optimized machining parameters in 

the rotary EDM process with the help of the Taguchi 

technique [8]. 

 

Material and Methods 

In this work, conductive metal mild steel was selected as 

the work-piece material. The present experiments have 

been performed using copper electrode with negative 

polarity. The electrode used is 10 mm in diameter and 40 

mm in height. Commercial Vitol-2 dielectric fluid was 

used during executing experiments. The weight reduction 

of tool should be taken before and after each experiment, 

the digital scale machine was used to measure the weight 

of work-piece and tool.  

Electrode wear ratio (EWR) is defined as ratios of 

electrode wear weighting under mass loss in the work-

piece removal, which are shown in following formula: 

EWR(%) =
EWL(g)

𝑇(min) ∗ ρe(
g

𝑚𝑚3)
× 100     (

𝑚𝑚3

𝑚𝑖𝑛
)            (1) 

Where EWR is electrode wear ratio in mm3/min, EWL is 

the electrode weight loss in grams, ρe is the electrode 

material density in g/𝑚𝑚3 and T is the machining time 

in min. To get good results in the empirical setup, the 

average was calculated from three-time reading of each 

experiment. In order to get the solution, matrix has been 

performed by using Minitab 15. 

Theory of Experimental Design 

In this experimental setup, significant effective factors 

such as pulse on time (TON), Discharge peak current (IP), 

servo voltage (SV) and pulse off time (TOFF) are selected 

to examine electrode wear rate. The smallest possible 

number of experiments (N) can be calculated from the 

subsequent equation: 
𝑁 = 𝑛𝑐 + 𝑛𝑎 + 𝑛𝑜                                         

(2) 

Where 𝑛𝑐 defines as factorial points number or corner 

points of the cube at [-1, 1], 𝑛𝑎 defines as axial points 

number or star points along the outside of the cube at [-2, 

2] and 𝑛𝑜 defines as a number of center points at the zero 

level [9]. 

The design includes 31 numbers of trials, with 8 axial 

points (∝= k1/2 ) from the center point of the design, k=4 

and thus the ∝= ∓ 2 and 7 number of center points. Each 

factor coded in 5 level as shown in Table 1.  

The coded value matching to the actual value for each 

process variable is resulting using the following formula: 
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Coded value =
actual value − mean test value 

range of test conditions
 

   (3) 

The coded numbers are thus obtained from the following 

transformation equations: 

x1 =
Ip − Ip0

∆Ip
 

                               (4) 

x2 =
SV − SV0

∆SV
 

                               (5) 

x3 =
TON − TON0

∆TON
 

                               (6) 

x4 =
TOFF − TOFF0

∆TOFF
 

                               (7) 

Table 1. Coded values of process variable 

Level 
Ip 

(ampere) 

SV 

(voltage) 

TON 

(µs) 

TOFF 

(µs) 

-2 *3 10 *10 10 

-1 10 30 50 30 

0 20 50 100 50 

1 30 70 150 70 

2 40 90 200 90 

*Even though by using equations (4) and (6) the coded values are ‘0’, 

the minimum available value of ‘3 and 10’ are sufficient. 

Response Surface Model 

The first order model is not enough where there is a 

curvature on the response surface. In this case second 

order models are suitable to approximate a part of real 

response surface with parabolic curvature. The second 

order modeling contains all terms of first order with 

some extra terms such as quadratic terms are correspond 

to β11x1i
2  and all cross-product terms that corresponding 

to β13x1ix3j. The general formulations of the second 

order models were expressed in equations 8 [10]. 

y = β0x0 + ∑βjxj +

q

j=1

∑βjj

q

j=1

xj
2 + ∑∑ βijxixj

i<j
+ε     (8) (8) 

In the present study, second order mathematical model 

is developed for the prediction of EDM die sinking 

performance as a function of discharge current (amp), 

servo voltage (volt), pulse off duration (µs) and pulse on 

time (µs). 

If all of these variables are assumed to be measurable, 

the functional relationship between response (electrode 

wear ratio) and independent variables (discharge 

current, servo voltage, pulse off time, and pulse on time) 

can be expressed as follow: 

y = β0x0 + β1x1 + β2x2 + β3x3 + β4x4 + β11x1
2

+ β22x2
2 + β33x3

2 + β44x4
2 + β12x1x2

+ β13x1x3 + β14x1x4 + β23x2x3

+ β24x2x4 + β34x3x4 

Where y is the true modeled response on a logarithmic 

scale, x0 = 1 (a dummy variable), x1, x2, x3and x4are the 

logarithmic transformation of discharge current, servo 

voltage, pulse on time and pulse off time. While 

β0, β1, β2, β3 and β4 are the parameters to be estimated. 

The experimental error can be predicted by transforming 

as: 

ŷ = y − ε = b0x0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x1
2

+ b6x2
2 + b7x3

2 + b8x4
2 + b9x1x2

+ b10x1x3 + b11x1x4 + b12x2x3

+ b13x2x4 + b14x3x4   
Where ŷ is the estimated and y is the measured value on 

a logarithmic scale, ε is the experimental random error 

and b values are the estimates of the β parameters. 

The normal equation to estimate the b values can be 

expressed as:  

(XTX)b = XTy And thus, b = (XTX)−1XTy    (9) 

Mathematical Model 

The combinatorial model based on Eq. (8), has been 

developed to correlate the effects of the mentioned 

process parameters on the EDM characteristics by 

computing the estimated regression coefficient of Eq. (8) 

using a statistical computer software ‘‘Minitab version 

15” and using the pertinent data from Table 2. The initial 

regression equation is: 

EWR = 1.84 + 0.91x1 − 0.17x2 − 0.75x3 − 0.08x4 

+0.29x1
2 + 0.07x2

2 − 0.44x3
2 + 0.08x4

2 − 0.04x1. x2 

−0.36x1. x3 − 0.01x1. x4 + 0.36x2. x3 + 0.02x2. x4 

+0.19x3. x4                                                                   (10) 

Analysis of Variance 

The analysis of variance was employed for fitting the 

data to the second-order model of EWR. ANOVA 

compute the sufficiency of the second order model for 

response as shown in Table 3. 

In addition, the main contribution can be referred as 

significant at an individual level. There are some terms 

in significant level. All linear terms, constant 

coefficient, x1 , x2 , x3 and x4, the quadratic terms, 

x1
2, x2

2, x3
2and x4

2, interaction terms, x1 ∗ x3, x2 ∗ x3 

and x3 ∗ x4, significantly contribute to the response 

model at alpha = 0.05. As a result, the final model for 

the response variable EWR is concluded as follows: 

𝐸𝑊𝑅 = 1.84 + 0.91𝑥1 − 0.17𝑥2 − 0.75𝑥3 − 0.08𝑥4 

+0.29𝑥1
2 + 0.07𝑥2

2 − 0.44𝑥3
2 + 0.08𝑥4

2 − 0.36𝑥1 ∗ 𝑥3 

+0.36𝑥2 ∗ 𝑥3 + 0.19𝑥3 ∗ 𝑥4                                            (11) 

Adequacy of the model 

The accuracy of prediction models are analyzed by 

statistical methods. This includes statistical analysis in 

terms of absolute fraction of variance (R2), root mean 

square (RMS) and mean absolute percentage error 

(MAPE). These statistical methods are shown in 

equations 12-14.  
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Table 2: Experimental results of die sinking EDM for developing RSM models 

Trial Actual value  Coded value EWR 

no. IP SV TON TOFF  X1 X2 X3 X4 (%) 

1 10 30 50 30  -1 -1 -1 -1 2.907 

2 30 30 50 30  1 -1 -1 -1 5.608 

3 10 70 50 30  -1 1 -1 -1 1.914 

4 30 70 50 30  1 1 -1 -1 4.318 

5 10 30 150 30  -1 -1 1 -1 1.083 

6 30 30 150 30  1 -1 1 -1 2.154 

7 10 70 150 30  -1 1 1 -1 1.541 

8 30 70 150 30  1 1 1 -1 2.542 

9 10 30 50 70  -1 -1 -1 1 2.308 

10 30 30 50 70  1 -1 -1 1 4.984 

11 10 70 50 70  -1 1 -1 1 1.585 

12 30 70 50 70  1 1 -1 1 3.823 

13 10 30 150 70  -1 -1 1 1 1.379 

14 30 30 150 70  1 -1 1 1 2.385 

15 10 70 150 70  -1 1 1 1 1.683 

16 30 70 150 70  1 1 1 1 2.815 

17 3 50 100 50  -2 0 0 0 1.157 

18 40 50 100 50  2 0 0 0 5.014 

19 20 10 100 50  0 -2 0 0 2.563 

20 20 90 100 50  0 2 0 0 1.841 

21 20 50 10 50  0 0 -2 0 5.234 

22 20 50 200 50  0 0 2 0 2.129 

23 20 50 100 10  0 0 0 -2 2.482 

24 20 50 100 90  0 0 0 2 2.023 

25 20 50 100 50  0 0 0 0 1.783 

26 20 50 100 50  0 0 0 0 1.841 

27 20 50 100 50  0 0 0 0 1.968 

28 20 50 100 50  0 0 0 0 1.783 

29 20 50 100 50  0 0 0 0 1.783 

30 20 50 100 50  0 0 0 0 1.968 

31 20 50 100 50  0 0 0 0 1.729 

 

Table 3. Analysis of Variance for EWR 

Source DF Seq SS Adj SS Adj MS F P Significance 

Regression 14 46.6187 46.6187 3.32991 219.64 0.000 Significant 

      Linear 4 34.5161 34.5161 8.62902 569.18 0.000 Significant 

      Square 4 7.3367 7.3367 1.83417 120.98 0.000 Significant 

      Interaction 6 4.7659 4.7659 0.79432 52.39 0.000 Significant 

Residual Error 16 0.2426 0.2426 0.01516    

      Lack-of-Fit 10 0.1881 0.1881 0.01881 2.07 0.193 Insignificant 

      Pure Error 6 0.0545 0.0545 0.00908    

Total 30 46.8613      

Standard deviation =  0.123128 R-Sq = 99.48%   

Mean = 2.527 R-Sq Adjusted = 99.03% 

Predicted residual error of sum of 

squares (PRESS) = 1.15751   

Predicted R-Sq = 97.53%   

Coefficient of variation= 4.873 

 

R2 = 1 −

[
 
 
 ∑ (Ea − Ep)

2N

i=1

∑ (Ea − EM)2N
i=1

]
 
 
 

                        (12) 
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RMS =
√∑ (Ea − Ep)

2
N

i=1

N
 

                      (13) 

MAEP =
1

N
∑(

|Ea − Ep|

Ea
× 100)

N

i=1

        (14) 

Where E𝑎 is the actual result, 𝐸𝑝 is the predicted result, 

𝐸𝑀 is the mean value and N is the number of patterns. A 

perfect fit would result in  𝑅2 value of 1 and a very good 

fit near 1. RMS and MAEP should be as close as 0 for 

excellent accuracy of prediction. 

Result and Discussion  

Optimal condition of the different process-factors effects 

with the machining characteristic of EWR values can be 

evaluated based on the developed mathematical models 

to reaching controlled electrical discharge machining. 

The graphical comparison of prediction results of EDM 

process performance with experimental values are 

depicted in Figure 1. The prediction result of RSM 

performance is parallel with experimental results. This 

indicates the ability of RSM model to predict the 

performance of EDM process. 

 

Figure 1. RSM predicted value and experimental value of EWR 

Furthermore, Minitab software plots four residual graphs 

as shown in figure 2. The residual graphs do not show 

any problems with the model. In the Normal probability 

plot of residuals the points in this plot are generally form 

near to the straight line, then the residuals are normally 

distributed. As shown in figure 2, Residuals versus fitted 

value plot is used to distinguish outliers, nonlinearity and 

unequal error variance.  

 
Figure 2. Residual plots 

Residual versus order is a plot to show that all residuals 

are in the order of the collected data and used to detect 

non-random of error terms which is named serial 

correlation. A positive correlation and negative 

correlation are specified by a clustering of residuals with 

the same sign and quick changes in the signs of 

consecutive residuals, respectively.  

As the response surface is described by the full quadratic 

EWR model, it is essential to analyze the optimum value 

of each factor levels setting. The graphical plots are very 

useful to analyze the result of second-order response 

surface model. Specially, surface plots are very helpful 

to illustrate the shape of the surface and determine the 

near optimum response. The surface plot of interaction of 

factors in EWR model is shown in Figures 3 and 4. 
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Figure 3. Response surface plot of different interaction: a) 

X1*X2, b) X1*X3, c) X1*X4  

 

Figure 4. Response surface plot of different interaction: a) 

X2*X3, b) X2*X4, c) X3*X4  

In case of situation that response surface is not a plane; it is 

more difficult to find the optimum value of each factor‘s levels. 

To this aim, Minitab software has an option to determine the 

optimum value in the possible criteria of each factor as shown 

in figure 5. 

 

Figure 5. optimum value of each factor‘s levels 

The optimum condition was expressed for the many 

process factors based on minimizing the EWR. The 

optimum values of parameters as seen in Figure 5 have 

been found, which are shown in Table 4. 

Table 4: Optimal value of EDM parameter 

Process parameter EWR 

Peak current 3 

Servo voltage 90 

Pulse ON time 46.5 

Pulse OFF time 77.9 

The R2, RMS and MAPE value for RSM model of EDM 

process performance is shown in Table 5. 

Table 5: prediction performance of RSM and ANN models 

Prediction 

parameter 

Response Surface Method 

𝑹𝟐 RMS MAPE 

EWR 0.995 0.088 3.265 

Conclusion 

It is observed from response surface model that the effect 

of discharge current and pulse on time duration were high 

on EDM performance. On the other hand the servo 

voltage and pulse off time duration on EDM Performance 

had less effect on the EWR.  

Also this research has investigated the optimization of 

control parameters in electrical discharge machining on 

mild steel work-piece with copper tools. Machining 

performance in the EDM process can be improved 

effectively by using optimum factors that had been 

determined. 
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Additionally, the main benefit of RSM is its ability to 

display the factor influences from the model of 

regression coefficients.  
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